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Introduction

In the 19th and 20t" centuries humanity made
enormous progress in understanding the way
the physical world works.

Rutherford established that the core of the
atom was a very dense chunk of matter that
contained most of the mass of the visible
Universe, but that required new rules of
physics to be understood.

As a direct consequence of Rutherford’s

discovery, Niels Bohr developed Quantum
Mechanics, defining the basic rules to guide
physics through the next century.
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Initial Wave of Discovery
1912-1939

Bohr Quantum mechanics and all that followed
Moseley X-ray sequence and charge of nuclei
Rutherford Nuclear transmutations

Aston Discovery of isotopes

Dirac Theory of the electron

Pauli Suggestion of neutrino

Chadwick Discovery of the neutron

Anderson Discovery of the positron

Yukawa Theory of nuclear force -- pion

Fermi Theory of beta decay

Hahn & Meitner Discovery of fission



Discovery Phase
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Discovery Phase

1932: The Neutron

Chadwick discovers a new ‘elementary’ particle.

Proc. Roy. Soc. 136, 692-1932




Thread:

Scattering to determine what’s inside



Scattering to determine what’s inside

1911: The atom has a nucleus

Phil. Mag. 21, 669 (1911)




Scattering to determine what’s inside

Estimates of nuclear size

Early estimates of nuclear radii came from: deviations in a-particle
scattering, and also the onset of reactions.

Gamow’s insight into quantum mechanics and tunneling modified
classical arguments.
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Scattering to determine what’s inside

Accelerators
~1928 request by Rutherford to get energetic projectiles to overcome the barrier.

Four, essentially simultaneous, ideas for accelerators.
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To explain a small compact nucleus

What is the origin of the short-range force?

Yukawa’s 1934 insight (with the pion eventually discovered by Powell in 1947)
(perhaps this is the start of ‘high-energy physics’ as a daughter of NP?)
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Scattering to determine what’s inside

1969: Substructure of the nucleon

Higher energy electron scattering yields direct evidence for quarks.

NN

1

a/c MOTT

Phys. Rev. Lett. 23, 935 (1969)
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Scattering to determine what’s inside

2007: The nucleon has a different shape in charge density than
in magnetization

Precision measurements with polarized electrons finally show this, and
correct previous attempts based on longitudinal-transverse separation.
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What gives mass to the proton and other hadrons?

Atoms and nuclei are lighter than their bound constituents.

Proton mass is ~2 orders of magnitude heavier than that of
the sum of its constituent quarks.

How and why are hadrons different?

' | ! | ! |
Modern theoretical understanding of 0.4 Rapid acquisition of mass is a
hadrons: courtesy of Craig Roberts - —//veﬁeCt of gluon cloud
// |
Quarks acquire dynamically generated ’
momentum-dependent mass from chiral 0.3 —mzoChiralimn] ]
symmetry breaking predicted by Nambu. s — m =30 MeV
3 — m =70 MeV
Giuons also contribute at low momenta. g
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These emergent phenomena have an enormous
impact:
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Thread:

Structure and Symmetries

(of nuclei)
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Structure and Symmetries
The first textbook on Nuclear Physics
Rutherford, Chadwick and Ellis (1930)

The nucleus is made of a-s, electrons and protons
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Structure and Symmetries

After the neutron is discovered

In the 1936 Review Article by Bethe and Bacher (the Bethe Bible) the
thinking was summarized; topics discussed about nuclear structure are:

The a-particles are subunits of heavier nuclei.

Quantum States of Individual Particles (Neutron and Proton “Shells”)
Evidence for Periodicities from the Energies of Nuclei

Periodicities in the Existing Isotopes.

The ‘shells’ seemed to work up to #°Ca, but not beyond. Bethe and
Bacher comment:

“it is necessary to give a strong warning against taking the shells too
literally ... this has been done too frequently in the past with the
effect of discrediting the whole concept of shells among physicists.”



Structure and Symmetries

1948: The Shell Model does work

A strong spin-orbit interaction accounts for the magic numbers.

The nucleus is amazingly transparent: an average potential, representing
interactions with other nucleons, works remarkably well.

Phys. Rev. 44 235 (1948)

Phys. Rev. 75 1766 1949
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Structure and Symmetr.
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Structure and Symmetries

1953: Nuclei have static deformations, and exhibit
rotational and vibrational bands




g
y
| y
p y

975)
Rev. Lett. 35, 1069 (1!
Phys. Rev.

VoLUME}S,NUMarR 16 YSICAL REVIE\V LET’I‘ERS Ocropgy 1975
Collect:ve Nuclear Stateg S Repr&sentatlons of 3 SU(6) Groypy*
Arimg
Aqrtment of Plzystcs U ersity of Tokyo, Tobyo, Japay,
and
chello
I(emfys{sclz Versneller I»slflwd Universt’ty Gron{»gen, Gronirzgen. The Netlzerlandsr. and
Lonne Nat ! Lap, Yaloyy, Argomze, Mot 60439
(Recelved 11 Augygt 1975)
We Propoge a descr!ptlon of ¢ Clive quadrupo Stateg i uclej termg
Tepreg tationg of 5 ( at within th bo vi
Tationg) e rotat!onal 1i Overeq
Tpose thig note O point out that th brational 1ong] banqg
6) o ~dimeng; Specia) Unitapy, T illugty, fuln the (6) 8roup
tion ig| tprovid the 5 propriate n classiryin lety f erve ectry we
for Nifieq tio; Hective onstrye¢ a sp, ifie de] h (i) he Prop.
ateg Strict; el en rtieg entjo, boy, y (i) n to haye
We op Tve th, maj atureg of Nalytie Solutj Spong. ng vibratio
ve ny ar mot are (j Quadpy, .. an tatio, 1] and (jjj) ,, Ces,
haract T of ¢ excztatio » and ter sli re, ngem t, the Onian de-23
€quajjt the Tationa) nd rog, ived 1 ang, n, , 4 Sing the
Cieg vy do not 3114 2 clegp. ie alg, a 0, Perat, 8ebraje
n betwe he dj ferep typeg of Tuctyre f th fir AN e .
ditional d j 0 t dj €rence rimg2 o Pointeq Ont 4
od Ste. the Iimited Hm!ts '
cle avaxlable i h se ~Con
Which intp, Uce -



Struc
ture and Symmet
ries

hhjc
lear Reactions

Need
the ri
o)
o reactions procleea;n about the st
ed? structu
. e of
uclei.

Slowl
y/ thrOu
gha co
m
pound nucleus, with
, ) intErm
ediate

Brei

it-Wi

igner resonan
ces

N
I the theo ry ¢
[¢)

Avera
g€d inte
ractio
the shell-mode Ia/nd the trans
ead to the ,Opz;{?ncy noted. in
Fesh cal model’
bach and Weis:z of
opf

assac o
chu, VS,
sells IS and
nstit Lap,
21t ora,
Re, eOf Tezory Jor ND
ceiv chnol Ny Vi
ed Febrye Ulear 1CTOR
» a”zbrgicl‘ence }4‘. WE
ge and 2ISS,
» Ma 7, KOpf
Line F
erin
g,

ry 18
, 195 3
) SSachusetts
- «

ener;
8y (<
SOM nuC]e
ica
e r reactiong
wit

brua

h
particle

tiOn >
me dl:aThe incid
tely fOrment
S a

V) » On
partfclee generally m
ak

COMn.

es the foj]d

apRIE T 1936 \\\\'alc.\\, AL \r(»\,\;m\a a9
Captur® of SloW Neutro? '
G. BrREVT axo ¥ WIGNER Justitul Adoan Study and princeto® Um’rnsily
v ary 15 1936)
Current cories of \arge © o sectio! § slow th the pucle! 18 most e \hrous\\ he P { the
peutron® al m\\ml\'\c\e(\ by {reque! absenc § stron® ncident ave e hight® Mm\nccr jon, smaller
ac:mel'mg i ood absor! s 88 W' A\ a8 the istence of will be e a\wwrpﬁ rewnzmce regio® 50 yolts
resond® pands- Thest facts @° a 4 fof by the cro®® cction a4 ace WY pe a8 igh - ¢
suppos! at i addivio” the usual here exis! A 05 107 on® the! mal €™ rgy- The c:lm\’.\le(\
cransiti® 1 qireual excit cion stat s ucleus in Hability § hav! pucled! el 10 the YoV energy '
which ™ only the captur A nev Adition '© cegion 18 su(\\c'\cm\ 1o W 9 cxp\a\m\\'\ reason” \
this, one of the pa Licles g e s W @ ple. Tew ratur Gects A \ysor\nion of filt red 12 ja- |
excit ate. Ra Lion dampins jgsion of ven int O e qence of band® which fit 3 with the
PRI oaden® nance it theory
compar n Wit psorption b
»ov['-;v—— -
| e —
3 . < 1 NEUT - -
1. \M‘\mm;cﬂ N | “f-‘f.‘:i‘?"e. ‘
| Manoawe s
Er -\ Fermiy P 1000— 337 S I
AN i ' (I : b
nd “o(:.\ey‘ ga | N "
Yously arge cross $€€ il -050x16"n —
cure of slow peutro H —— 'r'"
centially alike and H "'
targe ¢ ure 1% q ¥ - |
of the esof ¥ H
js WSW hc\p(u\ 3
2 30
as well a largé e
has D shown
cattening * 1 i of the Z0
: . 1o will be supPo that
PR 1ously nergies . .
s ronary (virtw energy
A aucieus which Y
nt, there g i
7 a0l region o! (\\cm\a\ energ\®
Ahove that reglo The ¥
al t=P e from - ) _
o — v A
o L
THe ..W"“?'aoi /\
T T ror O SO
—

pletely ;

y U
pon enterip

Fast

‘stripping’

g’and o
ons of B

utler

100——o
50l -
-E 30— — ‘
HTANE T
T

NEE
| '*Lr"('/ W,
+10 w08 |
o “02
el




Structure and Symmetries

Nucleon transfer

together with knockout reactions, are critical in identifying underlying single-
particle (hole) states., the skeleton of nuclear structure.

They trace crucial trends, such as the effects of the tensor force.
Similarly, inelastic reactions select collective excitations.
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Structure and symmetries

Modern approach:

Can nuclear structure be explained ab origine, starting with the NN

interaction, and without any model assumptions? (it takes very large-
scale calculations).
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Structure and symmetries

Symmetries shining through

exquisite structure with the powerful techniques of y-spectroscopy.
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Applications of nuclear physics

The discovery of fission

Naturwissenschafter 26 163 (1939)

. Telts o
Nature 143, 239 (1939) : 5 ﬂe‘ﬂ f die B :zn;lge V,
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Applications of Nuclear Physics

The Impact of the Manhattan Project

The Manhattan project impressed on society that physics had
something to offer (good or bad).

This success had an enormous impact on the support for all of
physics in the second half of the 20" century.



Applications of Nuclear Physics

Other Societal Applications

Nuclear energy, another application of fission, showed great
promise — but society seems reluctant — perhaps because of the tie
to weapons. (would be interesting to see whether 50-100 years
hence this will have changed).

Nuclear fusion may or may not be a practical source of energy.

Nuclear medicine is enormously successful and used extensively —
it somehow has avoided the onus of being ‘nuclear’.

Accelerators, developed for nuclear physics, are used widely
around the world, estimated at ~10,000 in medicine, 20,000 in
industry.



Applications of Nuclear Physics

Many applications to other sciences

Mssbauer effect (condensed matter, ...)

14C and other isotopes (archeology, geology, history, oceanography ...)
Accelerator Mass Spectrometry, traps, etc. ( same as above )

|sotopes in biology, chemistry, ...

Rutherford back-scattering (planetary science, ...)

Zeit. Phys. 151, 124 (1958)
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0
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Neutrinos
How contin
uous B spectra
were explai :
ned in 1930

In Rutherford, Chadwick and Ellis

We have seen that it is. anlikely that the electrons exist in the free
state in the nucleus and that many facts suggest that they are bound
jn pairs to an ¢ particle, forming what has been called an o particle.
The nucleus W&y thus be considered as built up of & particles, protons,
and o particles, all in definite quantum states. Owing to the large
masses of these particles there is nO difficulby in agsociating them with
plausible energies bub yeb keeping their de Broglie wave-lengths of
the order of the dimensions of the nucleus.

The usual development of this view 18 that the B ray changes are
initiated by an ¢ particle disintegration involving the departure of
. atiole of one of the & pa.rticles. This, however, would again

e electrons int the nucleus. Tt
a ..




Neutrinos

Genesis of the Neutrino
1930: Pauli suggests light neutral particle to explain B spectra.

1934: Fermi works out B decay with a zero-mass ‘neutrino’.
1953: Reines observes neutrinos.
Nuovo Cim. 11, 1 (1934)
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Neutrinos

Does Dirac’s theory of the electron apply to neutrinos?
Or are the rules different when there is no charge?

Nuovo Cim. 14 171 (1937)

Proc. Roy. Soc. A 117 610 (1928) DE L’ E
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PO v ST ON
y of th° Bost Not N
20T . Ota dj
The Quafﬂmm Th . Oam\)nd%e‘ Sllnto. - 8% dim Erropg MAJORANA
B \\6% ? y 08§ .
. Johns Co (998 21008 formeg, detty " POSSibilitg 4
(8} S b 7] ¥
DIRA™ anuary rig enire




Neutrinos

Th
e Weak Interaction

1956: L
gS :
1957: Wu, Ambler qugeSt parity is not cons
’ e 1
ayward et al. show thatr.vedd in B decay.
indeed it is n
ot.

1958: G
: Goldhaber e
t al. sh
ow that neutrinos have left-h
-handed chirali
Ity.

Ph
ys. Rev. 105 1671 (1957)

1yYSICAL REVIEW yOLUME 105, NUMBER § MARCH 1+ 1957 C. f
W Bo L P.

Ph
ys. Rev. 105 1413 (1957)

Pparity Nonconservation and 2 Two—Component Theory of the Neutrin®

. D. LEE, Columbia Universitys New York, New York
AND

C. N. YaNG, Institule for Ad:mncai Study, Princelon New JerseY
(Rccc'wed January 10, 19573 revised manuscript received anuary 17, 1957)

A two»ccmponcm theory of
in interactions involving the peutrin®. Various
marks concerning nonconszrvauon are made.

the neutrin® is discussﬂd. The theory is poss')b\c only if parity js not conserved
i i expcr‘\mcnml imp\icﬁlions a analyzed. Some geneml re- \

estion ha to @ familiar four-com-
whether (he weak u\\crac\ions are invariant under ponent neutrino formalism for which all pari\y-ronserv—
space inversion, charge conjugation, and time reversal: ing and pari\y-nonconserving ermi COUP ings C 2 !
Tt was poimed that althow h these invariances are (@8 defined I the append'm of reference® 1) are always

i ! Cy= c

genem\\y held to be valid for all interaction® experi- related in the following mam\er:Cs=C sy
) e = —Cv'y et Gections * to & are de-

nsecquenc
i can be put to expenmenta\ test. In the last section some
the poss'\b\c yiolation of these invariance laws in the genera\ remarks about nm\conscrva\'mn are made

weak interactions a num of Leriments Were pro
posed. One of these is t0 S udy the an lar distr'\but'xon 1L NEUTRINO FIELD
. ’ ) . .
0“.““:“’“‘ t‘\e\Sf;az'h:\)f :\f\?t::: ‘::‘:}cr“ 1 Consider first U ac eq free spin-}
s ndicate . pamc\c \with zero m& ecause of th bsence O t! !
direction of mass term, ceds only hree anty mmuting ermi 4
tian ma es. Thu neutr esented by

axial vector i . i
» g spinor function @ which has only two components:

momentum & i

m  The T uat n for ¢ can be written a8 p=c=1
/ ood only D Dirac equati? or ¢ (

ace inversion a-p¢,=i3¢,/0t, 1)

where 01, 7% 5 are the usual 2X2 Pauli matrices- The
re\at’w'\stic invarianceé of this equation for proper
Lorentz &mnsiu\'ma\’\ons (i Lorentz \mnsiormations
without space jnversion and time 'm\'crs'u)n) is well
known- n articular, for the space rotations through
an angle (] around, 2> the 2 axis, the wave function
transforms in the following way:

r’exp(fiazﬂ/ 2)¢- @
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Neutrinos neutrino . S
o SOIar neutrino ’

Lookmg ff?rds substantially fewer

Davis fin

is calculations.
Bahcall expected from his c
than

hys. Rev. Lett. 20 1205 (1968)
Phys. .

Voruag 20, NIIMBER 21

20 May 1968

> JI., Dop g, Harmer,f and Kennety, C. Hoffmap,
Brookhaven Nationy) Laboralor "y Upto, » New York 11973
(Recexved 16 Aprij 1968)

A Search yyag made fop Solar Neutringg With g detectoy baseq Upon the Teaction cl‘"(v,
€T)Ap3T '€ uppep limit of the Product of the heutring flux d the Cross Sectiong for
2l soureeg of eutringg gy, 3x10-3% Sec™! por opa atom. 1t ypo o concludeq SPecifica)..
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em™2 go0~1 at the earth, ang that Jegg than 94 oo the sup’g energy i Produceq 1y, the
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~
»
s B
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€ sun jg emitting 5 Measuraple flux of neu- Contains 394 000 liters (59 tons Chloring) of lig-
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Tesults of initia] measurements With g gold mjne at Lead, South Dakoty, It is eSsentia]

System bag, Upon the neutring Capture to blace the detectoy underground to Treduce the

Ty, €T)Ars Was pointeq out by Production of Ar from (p,n) Teactiong py pro-

COSmic-py int 3
‘he analog state of Ar (a Supera) - The rate of gpsr production in the liquig by cog-
tion) tna¢ lies 5,15 eV aboye the mic-ray Muons ¢ thig locatjon is estimateq ¢,
The importance of the contribuuon be 0,1 Ar% atom pep day, 11 Backg"round
“ino flux jg Teadily seen from the from interng) a conmmination nd f
e crogg Sectiong and the solar from the & -
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Neutrinos

Neutrino oscillations
By now, these have been mapped out in terrestrial measurements.
Neutrinos have finite-mass (differences)!
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Neutrinos

But what are the rules for neutrinos?

Once neutrinos have mass, chirality is not an intrinsic property.

This tends to favor Majorana’s idea of 70+ years ago, and it becomes more

plausible that a massive, neutral neutrino might be its own anti-particle.

Is this ‘beyond the Standard Model’ or not?
The Standard Model, after all, is a model, constrained by what assumptions

are fed into it.

The only test on the horizon is the nuclear process of
neutrinoless double beta decay.

Perhaps the next decade will resolve this fascinating issue?
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Threads

New forms of matter
Fascination with things that may (or may not) exist
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New forms of matter

New elements, the dream of alchemists

Fermi’s prize-winning mistake (Ausenium and Hesperium) foIIowed by ~25 real
transuranic elements. =

Hcc,..,"aspu.’?r

105 ... 118 Dubna

By 380g
Nature 133 898 (1934)

Possible Production of Elements of Atomic Number Higher than g2 "Penp,,”T o s Dubna Rep. P7-3808 (1968)
By Pro¥. E. Frryt, Royal University of Rome 6re
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New forms of matter

New isotopes

All particle-stable nuclei seem to be made in fragmentation.

What are their properties?

AE (a.u.)

1000 .
1000 isotopes
In one
750 experiment
500
250
$hoo 2200 2400 2600
A/Z (a.u.)
At GSI (proton rich, around 1°0Sn)
52j - - .::; = 10°
50— RS skl -
L T _‘ = 102
48 = ' ]
L ’*1-_'-;: = a
L L 10
46 e
L | reEn
“4s 1.95 1

At RIKEN (neutron-rich around Z=40)

55
50 10 4
45 [

10
40
102
N3s
10
30
25 L
20,3 25 26 2.7 28 29 10
A/Q
« 44r
o L
'g C
543
= |
o |
E £ r
R
< 41
40F
39F
10/
38|
37 et

2.65 2.7

44



New Form of Matter

Exploration of the limits of energy density.

Out of the complexity of collisions, signatures of a deconfined
Quark-Gluon Plasma are evident, for instance in the opacity to
2-jet events.

(Behavior consistent with weakly coupled plasma — connection to string theory?)

Adams et al., Phys. Rev. Let. 91 (2003)072304
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Reflections

The world concentrates the visible matter of which we are

made almost entirely into nucleons, that are then cooked
in stars into nuclei.

Some see nuclear physics as mired down in messy effects
that get in the way of the essential simplicities of nature.

Nuclear physicists try to understand why and how our

world is the way it is, why quarks and gluons appear only
as these 'messy' hadrons, how these hadrons form nuclei
that then show beautiful simplicities.

Perhaps what seems 'messy' and what is ‘fundamental’
is a reflection of the limitations of our understanding.



Reflections

Hadrons

Itis amusing that high-energy physics split off from nuclear physics
~50 years ago to study the properties of hadrons. Hadrons turned
out to have structure, thus not ‘elementary’ and were returned to
nuclear physics.

Electrons determine most properties of atoms, yet they contain
only ~¥0.1 % of the mass. Their binding lowers the mass.

Quarks determine most properties of protons and hadrons, yet
they contain only ~1% of the mass: their binding (their intrinsic
confinement) dominates the mass.

We are just beginning to gain some possible insights into the question:

Why is the mass and structure of hadrons what it is?



Reflections

’Elementary’ particles, their nature and masses

The Standard Model has been very successful but we still have no

understanding of the very specific numbers: masses, mixing angles,
etc. that describe the elementary particles.

Higher and higher energies will perhaps shed light on these issues,

but nuclear physics has contributed much — on neutrinos and on
other issues -- and this is likely to continue.

Why do we have the specific masses
and mixing matrices for quarks and leptons?

Are neutrinos Majorana’s neutrinos:
are they their own antiparticles?
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Reflections

Nuclei

Our world consists overwhelmingly of nuclei whose 'messy’ complexity
conceals some beautiful symmetries — we see these, but our
understanding is still incomplete.

The way nuclei are made in the universe in hot stars follows paths
through short-lived nuclei, near the limits of stability.

Short-lived nuclei are difficult to make and study in the laboratory —
investigations are just beginning.

How do the symmetries in nuclei emerge?

What are the properties of exotic short-lived nuclei
at the limits of binding?

How do these properties influence the formation of
elements?
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Reflections

Nuclear Physics in the U.K.

Rutherford started Nuclear Physics here at Manchester.

The u.k. provided a fertile intellectual and institutional environment
that lead the field in a glorious start for much of its first half century.

In recent decades, the UK funding seems not to have fared as well as
other similar countries around the world.

Why?

No simple answer: the quality of UK scientists in our field is still very

strong (albeit without any UK facilities) and they are an important
component of the global effort.



Reflections

Fashions
There are fashions in physics, as in other fields of human activities.
We all want to work on the same guestions as our colleagues.

These guestions are not necessarily settled before they go out of fashion.

Meant as a rough qualitative illustration RIBs ‘

Heavy lons -zl
Electrons <iilGGG -2l
Pion Factories << lINGEGIGNG:
Tandems & Sect.Foc. Cyclotrons =l GG
Sl \/ .. Graaff-s & Cyclotrons
Sl \cutrons
I ! I ! I ! l

1940 1960 1980 2000
Year
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Conclusions |I.

Rutherford’s discovery of 100 years ago had very
broad impact. It opened a window on the nucleus,
with all the marvelous interactions, symmetries
and rules that manifest themselves in ‘nuclear’
phenomena.

N uclear matter accounts for most of the visible,

accessible mass in our experience; its interactions
produce the energy that makes life possible.

We must continue the quest to better understand
the rules that govern our world.

Applications of nuclear physics have had major

impacts in medicine, on many aspects of society, and

on other sciences. Even nuclear weapons have helped shape
the history of the latter part of the 20t century and (arguably)
may have forced governments to be realistic, and reject another
major war as a viable option.



Conclusions Il.

Our species has an insatiable curiosity that has
served it very well in the evolutionary process.

Science, enabled by relatively stable societies, is a
modern manifestation of this very basic human trait.

We, practicing scientists in the last 100-200 years,

are privileged to be participating in unique advances
in human knowledge and understanding.

We hope it will continue -- if only our species can
also learn to use its intellect to control some of its
other evolutionary drives. Stable rational civilizations
are essential to enable science, the human quest for
knowledge and understanding, to continue and
flourish.



2?1 ... but, but, we are ‘nuclear’
.. and so was Rutherford 1?7?
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... but, | guess with the fine print, Rutherford
and we can still feel welcome.
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It says: ® '
‘DEDICATED TO ALL THOSE WHO STRIVE FOR PEACE AND TO RID THE WORLD OF NUCLEAR WEAPONS’
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